Commutativity preserving linear maps and Lie automorphisms of strictly triangular matrix space
نویسندگان
چکیده
منابع مشابه
Non-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملOn strong commutativity-preserving maps
Let R be a ring with center Z(R). We write the commutator [x, y] = xy− yx, (x, y ∈ R). The following commutator identities hold: [xy,z] = x[y,z] + [x,z]y; [x, yz] = y[x,z] + [x, y]z for all x, y,z ∈ R. We recall that R is prime if aRb = (0) implies that a= 0 or b = 0; it is semiprime if aRa = (0) implies that a = 0. A prime ring is clearly a semiprime ring. A mapping f : R→ R is called centrali...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملSpectrum Preserving Linear Maps Between Banach Algebras
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2002
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00264-1